First records and abundance of margay Leopardus wiedii from semi-arid thorny scrub habitat of the Brazilian Caatinga
Lyse P. C. Meira a, Alex R. Pereira a, Jackson M. Ministro a, Driele M. Santos a, Eva C. Aroucha b, Tadeu G. de Oliveira c, *
a Bioconsultoria Ambiental LTDA., Rua 02 de Julho, Centro, No. 35, Caetité – BA 46400-000/ Brazil
b Renova Energia S.A., Avenida Tancredo Neves, Caminho das árvores, No. 450, Andar 23º e 25º. Salvador-BA 41820-901, Brazil
c Depto. Biologia, Universidade Estadual do Maranhão / Instituto Pró-Carnívoros / Pró-Vida Brasil / Rua das Quaresmeiras Qd-8, No. 14, São Luís-MA, 65076-270, Brazil
* Corresponding author: tadeu4@yahoo.com (T.G. de Oliveira)
Abstract
The margay (Leopardus wiedii) is a small to medium sized Neotropical felid classified as Vulnerable in Brazil. The species’ northeastern range limits and use of open vegetation habitats has not been properly defined. The Caatinga biome is composed of a variable mosaic of semi-arid scrub/forest habitats and dominates the northeast region of Brazil. To date, it has not been confirmed that margays use the more open semi-arid thorny scrub habitat which is most characteristic of this region (the caatinga scrub). This study presents data from the first camera trap records for margays occurring in caatinga scrub, and documents new localities which constitute an extension of the species’ range in northeastern Brazil.
Keywords:
Caatinga domain; Camera trap; Distribution; Relative abundance; Northeast Brazil
© 2018 Universidad Nacional Autónoma de México, Instituto de Biología. Este es un artículo Open Access bajo la licencia CC BY-NC-ND
Primeros registros y abundancia de margay Leopardus wiedii en hábitat de matorral espinoso semiárido de la Caatinga brasileña
Resumen
El margay (Leopardus wiedii) es un felino de tamaño pequeño a mediano clasificado como vulnerable en Brasil. Los rangos de distribución nororiental de la especie y el uso de hábitat en ambientes abiertos no han sido bien definidos. El bioma Caatinga está compuesto por un mosaico de ambientes semiáridos arbustivos y forestales, los cuales dominan la región nororiente de Brasil. A la fecha no se ha confirmado el uso del hábitat semiárido abierto arbustivo espinoso que es característico de esta región (la caatinga propiamente dicha). Este estudio presenta los primeros registros de margay en cámaras trampa en la caatinga y documenta nuevas localidades que constituyen la ampliación del rango de distribución de esta especie en el nororiente brasileño.
Palabras clave:
Dominio Caatinga; Cámara trampa; Distribución; Abundancia relativa; Noreste de Brasil
There are currently 38 extant species of wild felids in the world, 11 of which occur in the Neotropical region of the Americas, 9 in Brazil alone (Hunter, 2015). The Caatinga biome, or “White forest” (translated from the original indigenous word), comprises a mosaic of semi-arid scrub/forest and is located in northeastern Brazil. Six felid species have been recorded in this vast area, including jaguar (Panthera onca), puma (Puma concolor), jaguarundi (Puma yagouaroundi), ocelot (Leopardus pardalis), northern-tiger cat (Leopardus tigrinus), and margay (Leopardus wiedii) (Oliveira et al., 2003). The latter only for the forest enclaves (Oliveira, 1994, 1998; Tortato et al., 2013).
The margay is a small to medium sized spotted cat (ca. 3.3 kg). Its conservation status is near threatened worldwide, and currently vulnerable in Brazil (Oliveira, 1998; Oliveira & Cassaro, 2005; Oliveira et al., 2015; Tortato et al., 2013). Although the species is listed as occurring in all of the biomes within the territory of Brazil, it is mainly associated with forested habitats ranging from dense and continuous forest to fragments and forest enclaves within the open vegetation biomes of the cerrado and pampas (Oliveira, 1994, 1998; Tortato et al., 2013).
However, it is debatable if margay actually range in the more semi-arid formations characteristic of the open Caatinga biome (Oliveira, 1994). To date, they have been described as restricted to forest enclaves within the biome, being Atlantic forest remnants at higher altitudes, or the forested areas located in valleys and canyons, such as those characteristic of Serra da Capivara National Park. As such, the extent of the species’ range in the Caatinga domain is marked as unknown on several distribution maps (Nowell & Jackson, 1996; Oliveira, 1994; Oliveira et al., 2015). Its worldwide distribution is also being updated by new records (e.g., Aranda & Valenzuela-Galván, 2015; Farías et al., 2015). The aim of this paper is to document the first confirmed observations of margays using open formations in the Caatinga domain and to estimate their relative abundance there. We also present reliable location records that will help improve the accuracy of distribution maps for the species.
The area in question is located in the municipalities of Caetité, Igaporã and Urandi, in the state of Bahia, northeast Brazil, and is the path of a series of wind energy projects that were already either installed and operational or were under construction at the time of this study. Temperatures in this area are nearly constant at approximately 21oC, while precipitation varies from 800 mm to 1,000 mm, and is concentrated in a 4-month rainy season (500 mm from November to January). The area is within the Serra do Espinhaço mountain range and is dominated by a mosaic of vegetation types featuring Brazilian savanna (cerrado), seasonal deciduous forests, semi-arid thorny scrub (caatinga), and carrasco, a transitional formation of cerrado-caatinga (Zappi, 2008). In general, the landscape is characterized by small rural properties, subsistence agriculture and small-scale cattle ranching. Although there are also a variety of agricultural projects, livestock tends to be grazed on the native scrub vegetation. The impact of anthropogenic activities such as road building, wind farms, pasture, crop plantations, subsistence agriculture, and deforestation resulting in forest fragments in different stages of regeneration, is thus considerable in this area (Barreto, 2014; Sampaio, 2010).
At elevations above 1,000 m in the Espinhaço Range, savanna (cerrado) formations that transition from grasslands to sparse and woody formations dominate the sandy soil plateaus. The physiognomy of the remaining caatinga vegetation is that of shrubs averaging 2-4 m in height, and some sparsely occurring small trees from 5-8 m tall. This particular type of physiognomy, the caatinga proper or caatinga scrub, is mostly found at the marginal levels of the Espinhaço Range (700-900 m), and has suffered severe impacts from anthropogenic activities (Pirani et al., 2003; Zappi, 2008). Deciduous forest is more restricted in range and is associated with the more fertile soils that occur discontinuously in the mountain valleys, where there is also a greater accumulation of water and nutrients (Almeida-Abreu & Renger, 2002; Azevedo et al., 2009).
Since these forested areas are often located in places where access is relatively difficult, the vegetation tends to be better preserved, sometimes harboring 10-20 m tall trees with a closed canopy formation and significant understory vegetation including lianas and epiphytes. Such places are of particular importance because they are essentially forest enclaves, usually located in steep valleys and gullies that facilitate rainwater drainage and protect the source of many rivers in the area. They are remnants of the once more widespread Brazilian tropical Atlantic Forest biome. There are also carrasco formations in the area, a type of mixed transitional vegetation of woodland savanna and caatinga scrub. Although there is some disagreement about its definition, some botanists consider carrasco to be a proper type of vegetation, composed of a plant species community that combines elements of Caatinga, cerrado and forest formations (Rizzini, 1997).
We generated data regarding margay occurrence through use of camera traps while conducting faunal monitoring at wind parks in the state of Bahia. We installed 15 to 17 Bushnell Trophy Cam XLT cameras on trees or posts at a height of about 50 cm, from 1 to 50 km apart. To improve the incidence of wildlife detections, we baited the camera trap sites with sausage, chicken pieces, fruits and roots (Srbek-Araújo & Chiarello, 2007; Tomas & Miranda, 2003). We undertook 3 sampling periods, one each in 2012, 2014 and 2015 at the same sites in the area of the Espinhaço Range. Cameras were located within all the vegetative formations found (savanna, seasonal deciduous forests, semi-arid thorny scrub [caatinga], and
carrasco).
We recorded 5 different margay individuals on 6 occasions, in 4 different areas after a total effort of 4,260 trap-days. One was recorded in a habitat characterized by the semi-arid thorny scrub (caatinga) in Caetité (14o00’20.78” S, 42o38’39.62” W), on 30/07/2015 (Fig. 1A). The remaining 5 were in areas of dry deciduous forest habitat. Four were in Igaporã at 2 different camera stations (13o51’18.59” S, 42o40’19.51” W and 13o52’52.98” S, 42o40’29.02” W) on 15/10/2012, 08/10/2012, 19/10/2012, and 12/01/2014 and the other was in Urandi (14o32’08.78” S, 42o35’04.08” W) on 19/07/2015 (Fig. 1 B-F). These new records extend the known range of the margay considerably, by at least 325 km north, 234 km east and 162 km west of the known range, an area extension larger than Portugal or French Guiana (> 90,000 km2) (Fig. 2). They redefine the species’ distribution in northeastern Brazil, the limits of which remain uncertain (Nowell & Jackson, 1996; Oliveira, 1994; Oliveira et al., 2015), and go some way towards bridging this gap in knowledge and helping to define the potential distributional models of margays in northeast Brazil. Additionally, these data represent the first confirmed records of the species using the open vegetation formations that are characteristic of semi-arid caatinga thorny scrub habitats.
http://rev.mex.biodivers.unam.mx/wp-content/uploads/2018/vol-89/89-1-mar-2018/html/29-Fig1.tif
Figure 1. The first records of margay (Leopardus wiedii) in the open caatinga semi-arid thorny scrub (A) and in the dry deciduous forests (B, C, D, E, F) of the Caatinga domain in northeast Brazil.
Thus, it seems that although the species may have evolved a preference for more forested habitats, it also makes use of open formations, even if only secondarily. The use of dry forests by margays has also been reported in Mexico (Valenzuela-Galván et al., 2013). Additionally, Hodge (2014) recently showed that margays use areas with 51-75% canopy cover to a greater extent than the denser forest locations in the eastern Andean foothills of Ecuador. These observations suggest that the species is far more flexible in its use of dense vegetation cover than previously thought, which our findings corroborate. Interestingly, 3 of our records were obtained during daylight hours, an unusual time for the species to be active: the vast majority of camera trap records to date have been nocturne-crepuscular ones (Oliveira et al., unpublished data; Vanderoff et al., 2011).
As expected, the abundance of margays observed here (0.141 records/100 trap-days) is relatively low, especially
http://rev.mex.biodivers.unam.mx/wp-content/uploads/2018/vol-89/89-1-mar-2018/html/29-Fig2.tif
Figure 2. Current margay (Leopardus wiedii) distribution map showing new records for the species in northeast Brazil according to the IUCN.
in comparison to other areas in the cerrado, Atlantic Forest and Amazon biomes in Brazil, where the species average is 0.7 records/100 trap-days (Oliveira, 2011). Abundance in the specific caatinga scrub habitat was even lower, at 0.081 records/100 trap-days. Thus, it is possible to conclude that, given the relatively low relative abundance, this felid is rare in both the biome and specific habitat of the Brazilian Caatinga (see Oliveira et al., 2018). In the tropical deciduous forest of southern Puebla, Mexico, margay abundance was found to be 0.112 records/100 trap-days (Farías et al., 2015), similar to that found in this study. Conversely, in the Andean foothill forests of Ecuador, where the species is considered quite common, the relative abundance of margays was 2.64 records/100 trap-days (Vanderhoff et al., 2011). Therefore, although margays are present within the Caatinga biome, it seems that they have a marginal distribution and a very small population size. It is likely to represent a sink population from the nearby Atlantic Forest. Given their conservation status, and the species abundance found in the study area, this population should be regarded as highly threatened, particularly as it is currently under considerable pressure from anthropogenic activities. Since the margay is already classified as a Vulnerable species in Brazil (Tortato et al., 2013), we recommend that environmental authorities should give special attention to this recently discovered population.
References
Almeida-Abreu, P. A., & Renger, F. E. (2002). Serra do espinhaço meridional: um Orógeno de colisão do Mesoproterozóico. Revista Brasileira de Geociências, 32, 1–14.
Aranda, M., & Valenzuela-Galván, D. (2015). Registro notable de margay (Leopardus wiedii) en el bosque mesófilo de montaña de Morelos, México. Revista Mexicana de Biodiversidad, 86, 1110–1112.
Azevedo, A. A., Goulart, M. F., Silva, J. A., & Vilhena, C. F. (2009). Mosaico de unidades de conservação do Espinhaço: Alto Jequitinhonha – Serra do Cabral – processo de criação e implantação. Instituto Biotrópicos. Retrieved on October 15th, 2015 from: http://www.icmbio.gov.br/portal/images/stories/mosaicos/planejamento-espinhaco.pdf
Barreto, J. J. (2014). Plantas medicinais: saberes tradicionais. Lauro de Feitas, Brazil: Solisluna Editora.
Farías, V., Téllez, O., Botello, F., Hernández, O., Berruecos, J., Olivares, S. J. et al. (2015). Primeros registros de 4 especies de felinos en el sur de Puebla, México. Revista Mexicana de Biodiversidad, 86, 1065–1071.
Hodge, A. M. C. (2014). Habitat selection of the margay (Leopardus wiedii) in the astern Andean foothills of Ecuador. Mammalia, 78, 351–358.
Hunter, L. (2015). Wild cats of the World. London: Bloomsbury.
Nowell, K., & Jackson, P. (1996). Wild cats: status survey and conservation action plan. Gland, Switzerland: IUCN/SSC Cat Specialist Group.
Oliveira, T. G. (1994). Neotropical cats: ecology and conservation. São Luís, Brazil: Editora da Universidade Federal do Maranhão.
Oliveira, T. G. (1998). Leopardus wiedii. Mammalian Species, 579, 1–6.
Oliveira, T. G. (2011). Ecologia e conservação de pequenos felinos no Brasil e suas implicações para o manejo (Ph.D. Thesis). Universidade Federal de Minas Gerais. Belo Horizonte, Brazil.
Oliveira, T. G., & Cassaro, K. (2005). Guia de campo dos felinos brasileiros. São Paulo: Sociedade de Zoológicos do Brasil.
Oliveira, J. A., Gonçalves, P. R., & Bonvicino, C. R. (2003). Mamíferos da Caatinga. In I. R. Leal, M. Tabarelli, & J. M. C. Silva (Eds.), Ecologia e conservação da Caatinga (pp. 275–334). Recife, Brazil: Editora da Universidade Federal de Pernambuco.
Oliveira, T. G., Michalski, F., Botelho, A. L. M., Michalski, L. J., Calouro, A. M., & Desbiez, A. L. J. (2018). How rare is rare? Quantifying and assessing the rarity of the bush dog Speothos venaticus across the Amazon and other biomes. Oryx, 52, 98–107.
Oliveira, T., Paviolo, A., Schipper, J., Bianchi, R., Payan, E., & Carvajal, S. V. (2015). Leopardus wiedii. The IUCN Red List of Threatened Species 2015: e.T11511A50654216. Retrieved on November 24th, 2015 from: http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T11511A50654216.en
Pirani, J. R., Mello-Silva, R., & Giulietti, A. M. (2003). Flora de Grão Mogol, Minas Gerais, Brasil. Boletim de Botânica da Universidade de São Paulo, 21, 1–24.
Rizzini, C. T. (1997). Tratado de fitogeografia do Brasil (second edition). Rio de Janeiro: Âmbito Cultural Edições Ltda.
Sampaio, E. V. S. B. (2010). Caracterização do Bioma Caatinga: características e potencialidades. In M. A. Gariglio, E. V. S. B. Sampaio, L. A. Cestaro, & P. Y. Kageyama (Eds.), Uso sustentável e conservação dos recursos florestais da Caatinga (pp. 29–48). Brasília, Brazil: Serviço Florestal Brasileiro.
Srbek-Araújo, A. C., & Chiarello, A. G. (2007). Armadilhas fotográficas na amostragem de mamíferos: considerações metodológicas e comparações de equipamentos. Revista Brasileira de Zoologia, 24, 647–656.
Tomas, W. M., & Miranda, G. H. B. (2003). Uso de armadilhas fotográficas em levantamentos populacionais. In L. Cullen, R. Rudran, & C. Valladares-Padua (Eds.), Métodos de estudo em biologia da conservação & manejo da vida silvestre (pp. 243–267). Curitiba, Brazil: Editora da Universidade Federal do Paraná.
Tortato, M. A., Oliveira, T. G. de, Almeida, L. B., & Beisiegel, B. M. (2013). Avaliação do risco de extinção do gato-maracajá Leopardus wiedii (Schinz, 1821) no Brasil. Biodiversidade Brasileira, 3, 76–83.
Valenzuela-Galván, D., De León-Ibarra, A., Lavalle-Schánchez, A., Orozco-Lugo, L., & Chávez, C. (2013). The margay Leopardus wiedii and bobcat Lynx rufus from the dry forests of Southern Morelos, Mexico. The Southwestern Naturalist, 58, 118–120.
Vanderhoff, E. N., Hodge, A. M., Arbogast, B. S., Nilsson, J., & Knowles, T. W. (2011). Abundance and activity patterns of the margay (Leopardus wiedii) at a mid-elevation site in the eastern Andes of Ecuador. Mastozoología Neotropical, 18, 271–279.
Zappi, D. (2008). Fitofisionomia da Caatinga associada à Cadeia do Espinhaço. Megadiversidade, 4, 1–2.