

Revista Mexicana de Biodiversidad

Revista Mexicana de Biodiversidad 94 (2023): e944968

Ecology

Diversity of planktonic gastropods from western Baja California Peninsula assessed by 18S rDNA sequences

Diversidad de gasterópodos planctónicos del oeste de la Península de Baja California evaluada mediante secuencias de 18S ADNr

Ricardo Pérez-Enríquez ^{a,} *, Alejandra Arciniega ^b, Noé Díaz-Viloria ^c, Salvador E. Lluch-Cota ^a

^a Centro de Investigaciones Biológicas del Noroeste, S.C., Ave. Inst. Politécnico Nacional No. 195, 23096 La Paz, Baja California Sur, Mexico

^c Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Ave. Inst. Politécnico Nacional s/n, 23096 La Paz, Baja California Sur, Mexico

*Corresponding author: rperez@cibnor.mx (R. Pérez-Enríquez)

Received: 1 February 2022; accepted: 2 December 2022

Abstract

The study of planktonic mollusks is a relevant element to understand the dynamics of the benthic communities under present and future environmental conditions. We present the description of the biodiversity of planktonic gastropods at 2 sampling sites on the Pacific coast of the Baja California Peninsula, Mexico. Organisms collected from plankton tows at 2 locations (Cabo Tosco, n = 89 and La Bocana, n = 213) were sequenced for a portion of the 18S rDNA gene. High diversity was registered, with 71 Molecular Operational Taxonomic Units (MOTUs), which contrasts with the low phenotypic diversity of stereoscopic images. Differences in community composition between and within sampling sites indicate that planktonic gastropod distribution is not random but probably modulated by micro-environmental processes such as currents or biological events. The presence of non-gastropod sequences within some shells (n = 6) suggests their use as carriers of eggs or larvae of other taxa.

Keywords: Larval dispersal; Mollusca; Meroplankton; GenBank

Resumen

El estudio de moluscos planctónicos es un elemento relevante para la comprensión de la dinámica de la comunidad bentónica bajo las condiciones ambientales actuales y futuras. Se presenta la descripción de la biodiversidad de gasterópodos planctónicos en 2 sitios de la costa del Pacífico de la península de Baja California, México. Organismos recolectados en arrastres planctónicos en 2 localidades (Cabo Tosco, n = 89 y La Bocana, n = 213) se secuenciaron para

^b Universidad de La Rioja, Ave. de La Paz No. 93-10, Logroño, La Rioja, Spain

una fracción del gen 18S ADNr. Se registró una alta diversidad con 71 unidades taxonómicas moleculares operativas (MOTU), que contrasta con la baja diversidad fenotípica observada en imágenes de estereoscopio. Las diferencias en la composición de la comunidad entre y dentro de los sitios de muestreo, indican que la distribución de gasterópodos planctónicos no es aleatoria, sino que se encuentra, probablemente, modulada por procesos microambientales tales como corrientes o eventos biológicos. La presencia de secuencias de organismos que no son gasterópodos dentro de algunas conchas (n = 6) sugiere que son utilizadas por organismos de otros taxones como portadores de huevos o larvas.

Palabras clave: Dispersión larvaria; Mollusca; Meroplancton; GenBank

Introduction

Planktonic dispersal in the marine environment is one of the leading connectivity processes among populations of meroplanktonic and holoplanktonic gastropods (Crocetta et al., 2020; Roegner, 2000), and is a relevant element of the trophic dynamics of ecosystems and indirect indicators of the health of adult populations (Campos & Landaeta, 2016; Chávez-Villegas et al., 2014). Planktonic dispersal study will aid in a better understanding of the molluskan community's behavior under present and future environmental conditions (e.g., Aceves-Medina et al., 2020; Molina-González et al., 2018). For this purpose, baseline studies on the species composition that rely on the use of genetic markers are a starting point.

Planktonic gastropod identification is usually made using their morphology through microscope observation. The use of genetic markers (the Cytochrome Oxidase Subunit I of the mitochondrial DNA, COI) for this purpose is more recent. It has been used to study the genetic connectivity of the marine caenogastropod *Bursa scrobilator* (Crocetta et al., 2020). Due to its high conservation, the 18S ribosomal nuclear DNA (18S rDNA) gene has been proposed for biodiversity studies (Ranjithkumar et al., 2018).

Planktonic gastropods have been quite extensively studied worldwide (Bandel et al., 1997; Campos & Landaeta, 2016; Chávez-Villegas et al., 2014; Oliva-Rivera & Navarrete, 2007). However, in northwestern Mexico, the main efforts have been in the study of the species composition of holoplanktonic mollusks in the Gulf of California (Angulo-Campillo et al., 2011) and the western coast of the Baja California Peninsula (BCP) (Aceves-Medina et al., 2020; Molina-González et al., 2018; Moreno-Alcántara et al., 2020; Sánchez-Hidalgo y Anda, 1989), characterizing these regions as highly diverse. However, there is no available information about meroplanktonic gastropods in the region. Therefore, this work presents the first record of the planktonic gastropod biodiversity at 2 sites of the western coast of the BCP obtained by genetic markers.

Materials and methods

The sampling design originally intended to evaluate the presence of abalone larvae at 2 sites on the western coast of the Baja California Peninsula: La Bocana (LB: 26°45'1.9" N, 113°42'20.9" W) and Cabo Tosco (CT: 24°18'26.2" N, 111°42'36.6" W) (Fig. 1). However, we focused our study on other mollusks, as abalone larvae were not found. Sampling was done on December 1st, and 3rd, 2009 for LB and CT, respectively. At LB, the sampling area was located about 4.5 km southward, with an average depth of 10 m (Fig. 1). The rocky bottom floor is mostly flat with several small stone promontories composed of boulders, crevices, and a high abundance of macroalgae, mainly Eisenia arborea (Areschoug, 1876). CT is located at the southernmost part of Isla Margarita, and the sampling site was just 150 m off the coastline (Fig. 1), with a depth of approximately 3 m. The bottom is composed of large rocks with abundant crevices, surrounded by soft bottom but low macroalgae coverage. These sites were selected because they represent a high abalone productive area (LB) and the southern extreme of abalone species distribution (CT) (León-Carballo & Muciño-Díaz, 1996). The 8-day mean surface temperature in the first week of December 2009 at each site, which includes the sampling period and was obtained from the Aqua MODIS satellite --- NPP, 0.0125°, West U.S., day time (11 microns), Simons (2022)— was 21 °C and 24 °C, respectively (Fig. 1).

At LB, there were 3 towing stations: *1*) surface and 2) at 3-4 m depth at the same geographical position (LB-01 and LB-10, respectively), and 3) at the surface, approximately 1 km to the west (LB-07) of the previous position. At CT, there was one towing station (CT-01) at the surface, in a semi-protected area on the southwestern side of Isla Margarita. Tows followed a circular trajectory at a speed of 2.5 knots for 5 min. The plankton net was conical (0.45 m mouth diameter and 180 μ m mesh size), with a calibrated flowmeter and a collection cup also with a 180 μ m mesh size. Samples were transferred to a 500 mL plastic flask and preserved in 80% ethanol.

Figure 1. Sampling sites at La Bocana (LB) and Cabo Tosco (CT) on the Baja California Peninsula. Color scale represents the 8-day sea surface temperature (°C) data from Aqua MODIS satellite (Simons, 2022).

The biomass from the plankton tows was estimated by displaced volume (Beers, 1976) and standardized to mL of biovolume per 1,000 m³ of filtered seawater (Smith & Richardson, 1979). Due to high biomass at each towing station, the samples were fractionated to ¹/₄ with a Folsom splitter. Using a stereoscope at 35×, following the description of Courtois de Viçose et al. (2007) for *Haliotis tuberculata* abalone larvae, gastropod mollusks with egg or globular shapes were separated (Bandel et al., 1997). A total of 384 individuals were separated, set in slides with wells (1 individual per well), and photo-documented (Leica Application Suite EZ, ver. 1.5.0). Individuals were transferred to 96-well PCR plates containing 70% ethanol.

DNA extraction was done following the protocol of Selvamani et al. (2001), with slight modifications. Before extraction, individuals were crushed with a plastic pestle and dried at ambient temperature. Samples were incubated in 18 μ L of lysis buffer (Tris-HCl 10 mM, pH 8.3, KCl 50 mM, Tween-20 0.05%) and 2 μ L de Proteinase-K (Sigma®, 2.5 mg/mL) at 55 °C for 24 h. After this time, the proteinase was inactivated by incubating the samples at 95 °C for 10 min. The plates were preserved at -20 °C until the PCR was performed.

A fragment of the 18S rDNA gene was amplified with primers 18SHal2F (5'-TTGGATAACTGTGGTAATTCT AGAGC) and 18SHal2R (5'-CCGGAATCGAACCCT GAT) (Aranceta-Garza et al., 2011). The reactions contained 0.2 mM de dNTPs (Invitrogen), 0.5 μ M of each primer, PCR buffer 1× (Invitrogen), 1.5 mM MgCl₂, 0.05 U Platinum® *Taq* DNA polymerase (Invitrogen), 2 μ L of DNA and completed to 30 μ L with MilliQ® water. PCR

conditions were: 1 cycle at 94 °C for 4 min, 30 cycles at 94 °C for 45 s, 57 °C for 45 s, 72 °C for 45 s, and a final extension at 72 °C for 10 min in a thermal cycler (C1000, Bio-Rad). PCR products were verified in a 1.5% agarose gel stained with SYBR gold (Promega), visualized in a UV transilluminator (UVP BioDoc-it Imaging System).

PCR products of approximately 220 bp were individually sequenced either in forward and reverse (LB-07) or in forward only (LB-01, LB-10, CT-01) (Macrogen, Korea). The sequences were manually revised for quality and edited with ChromasPro v. 2.1.9 (Technelysium Pty Ltd). The edited sequences were analyzed to determine the number of similar genotypes with the software DnaSP v. 6.12.03 (Rozas et al., 2017). Identical sequences (100% match) were organized into Molecular Operational Taxonomical Units (MOTUs), for which the putative identity was obtained by a local alignment analysis with BLAST (Altschul et al., 1990). MOTUs were identified either to family, genus, or species level based on the hits with the highest similarity percentage (> 95%) and lowest E value (probability of the sequence match being random $< 1 \times 10^{-90}$). Nomenclature follows the NCBI (National Center for Biotechnology Information) Taxonomy database (Schoch, 2011).

The MOTUs sequences were analyzed as haplotypes (most sequences were homozygotes) to construct a minimum spanning network (Bandelt et al., 1999). The software PopArt (Leigh & Bryant, 2015) was used to visualize genealogical relationships among towing stations and obtain genetic diversity estimators (nucleotide diversity and number of segregating and parsimony-informative sites). The MOTUs' diversity among towing stations was estimated by the Shannon-Weaver index using the natural logarithm with the vegan package (Oksanen et al., 2020) in R ver. 4.1.1 (R Core Team, 2013), using MOTUs as putatively non-identified species.

Results

At LB, the plankton biomass at the mid-water tow was more than twice as high (LB-10, 1,222 mL 1,000 m⁻³) as at the 2 surface stations (LB-01 and LB-07, 491 and 557 mL 1,000 m⁻³, respectively). Surface biomass at CT (CT-01) was 883 mL 1,000 m⁻³. Planktonic gastropods, similar in shape, varied between 200 - 500 μ m in width. As shells were translucent, it was possible to assess the presence of tissue within (Fig. 2).

Of a total of 384 individuals analyzed, 302 resulted in reliable DNA sequences matching gastropod mollusks (phylum Mollusca, class Gastropoda). The rest of the sequences were of low quality (n = 75) or matched other

Table 1

Number of MOTUs and individuals per taxonomic group of the Class Gastropoda* at the 2 sampling sites.

Subclass	Order	MOTU	Individuals
Caenogastropoda	Caenogastropoda incertae sedis	2	3
	Littorinimorpha	16	126
	Neogastropoda	5	8
	Ptenoglossa (suborder)	1	2
Heterobranchia	Aplysiida	3	16
	Cephalaspidea	6	11
	Ellobiida	1	2
	Euthyneura (clade)	1	1
	Nudibranchia	9	16
	Pleurobranchida	1	4
	Pteropoda	5	14
	Heterostropha	1	1
	Sacoglossa	9	34
Neritimorpha	Cycloneritida	5	35
Patellogastropoda	Patellogastropoda	1	1
Vetigastropoda	Lepetellida	2	2
	Trochida	2	5
Unclassified gastropod		1	21
	Total	71	302

* Nomenclature from the Taxonomy browser of the NCBI database

(Schoch, 2011).

taxonomic groups (phylum Cnidaria, order Bivalvulida, and phylum Arthropoda, orders Euphausiacea and Calanoidea, n = 6) or showed no significant match to any species (n = 1). A total of 71 MOTUs were distinguished with matching identities higher than 95% and E-values lower than 1×10^{-100} in most sequences, putatively belonging to several families and orders of 5 subclasses (Tables 1, 2).

From the similarity analysis to GenBank sequences by BLAST, 23 MOTUs gave 100% identity. Identification to the species level was likely for 7 MOTUs (i.e., MOTUs 02, 05, 13, 33, 48, 61, and 62; Table 2). The remaining 16 are not certain as some of these MOTUs showed matching hits either to several genera (i.e., MOTUs 01, 03, 08, 10, 12, 15, 20, 22, 25, 28, 64, and 68; Table 2) or several species of a certain genus (i.e., MOTUs 29, 65, 66, and 67; Table 2).

When individual images were organized per MOTU (Supplementary material: Fig. S1[https://doi.org/10.5281/zenodo.7685921]), it was observed that there are many

similarities among individuals at distinct taxonomic levels, including subclasses. In contrast, a high genetic diversity was found (nucleotide diversity $\pi = 0.045$, with 72 segregating sites and 55 parsimony-informative sites; Supplementary material: Table S1. The phylogenetic analysis inferred from the Minimum Spanning Network indicated that most identified subclasses were represented in all locations (Fig. 3). One exception was Neritimorpha, which was mainly observed in CT.

The MOTUs' diversity (Shannon index) varied among towing stations with the highest at LB-10 and the lowest at (LB-07) (Fig. 4). This large difference can be inferred by the presence of many MOTU 04 (family Cypraeidae) individuals at LB-07 (Table 2). Even though the diversity was rather similar among CT-01, LB-01, and LB-10 (Fig. 4), the MOTU composition was different with several MOTUs found only in a single towing station (CT-01: 17; LB-01: 16; LB-10: 14; LB-07: 7), i.e., 54 of the 71 MOTUs found were unique (Table 2).

Table 2

Individuals per sampling station, organized in Molecular Operational Taxonomic Units (MOTU) from the genetic identity analysis (BLAST) of the 18S rDNA gene sequences in the GenBank database. Genbank accession numbers are shown only for the MOTUs of highest identity percentage and lowest E-value hits. CT-01: Cabo Tosco; LB: La Bocana. BCP: Baja California Peninsula. Proporcionar tabla.

	San	npling	, stati	ons	Taxonomy of hits						hits stics	Notes on possible species in the study region (the Pacific coast of the BCP) based
MOTU	CT-01	LB-01	LB-10	LB- 07	Subclass	Order	Superfamily	Family	Genera and species (GenBank accession number)	Е	% Identity	on the Global Biodiversity Information Facility web [https://www.gbif.org- Consulted: Jan, 14 2022]
01	2	-	-	-		gastropoda <i>ae sedis</i>	Abyssochry- soidea	Abyssochrysidae Provannidae	Abyssochrysos melanioides (AB930376) Rubyspira osteovora (GQ290530)	5×10 ⁻⁹⁹	99.1	There are no records of the genera <i>Abyssochrysos</i> or <i>Rubyspira</i> in the BCP
02	-	-	1	-		Caeno incerto	Epitonioidea	Epitoniidae	Alexania inawazai (AB930380)	4×10 ⁻¹⁰⁶	100	There are no records of <i>Alexania</i> or other species of the genus in the BCP
03	5	-	-	-			Littorinoidea Calyptraeoidea Vermetoidea	Lacunidae Calyptraeidae Vermetidae	Lacuna pallidula (AJ488686) Crepidula fornicata (AY377660) Thylacodes adamsii (HQ833992)	3×10 ⁻¹⁰²	100	The species <i>Lacuna unifasciata</i> (One-band lacuna) has been registered in the BCP. Several species of the genus <i>Crepidula</i> (American slipper limpet) have been registered in the BCP. <i>Thylacodes adamsii</i> (Scaly worm shell) has been registered in the north of the BCP
04	1	5	8	51			Cypraeoidea	Cypraeidae	Erosaria erosa (KT753625) Erronea erones (HQ833998)	5×10 ⁻¹²⁵	100	<i>Erosaria erosa</i> and <i>Erronea errones</i> (Mistaken cowrie) are not registered in the BCP
05	-	1	-	-	oda	a	Pterotra-	Atlantidae	Atlanta sp. (MW203647)	3×10 ⁻¹⁰¹	100	Several species of the genus Atlanta have
06	-	-	-	1	Caenogastropc	Littorinimorph	cheoidea		Atlanta sp. (MW204226)	2×10 ⁻¹²³	99.6	been registered in the Gulf of California (Angulo-Campillo et al., 2011), and the BCP (Aceves-Medina et al., 2020; Molina- González et al., 2018; Moreno-Alcántara et al., 2020).
07	-	1	-	-			Pterotra- cheoidea	Pterotracheidae	Firoloida desmarestia (MW204031)	4×10 ⁻⁸⁸	95.3	The species <i>Firoloida desmarestia</i> have been registered in the Gulf of California (Angulo-Campillo et al., 2011), and the BCP ((Molina-González et al., 2018)
08	2	-	-	-			Rissooidea Truncate- lloidea	Rissoinidae Hydrobiidae	Phosinella clathrata (AB930392) Rissoina fasciata (DQ916528)	1×10 ⁻¹⁰⁶	100	No genera of families Rissoinidae or Hydrobiidae are registered in the BCP
09	-	11	2	-			Truncate- lloidea	Tateidae	Trochidrobia punicea (KT313223) Novacaledonia numee (KT313210) Kanakyella gentilsiana (KT313209) and others	5×10 ⁻⁹⁹	99.1	No genera of family Tateidae are registered in the BCP
10	-	1	-	-					Trochidrobia punicea (KT313223) Novacaledonia numee (KT313210) Kanakyella gentilsiana (KT313209) and others	9×10 ⁻¹⁰²	100	No genera of family Tateidae are registered in the BCP

Table 2. Continued

	Sampling stations		ons	Tax	onomy	of hits	hits		GenBank hits characteristics		Notes on possible species in the study region (the Pacific coast of the BCP) based	
MOTU	CT-01	LB-01	LB-10	LB- 07	Subclass	Order	Superfamily	Family	Genera and species (GenBank accession number)	Е	% Identity	on the Global Biodiversity Information Facility web [https://www.gbif.org- Consulted: Jan, 14 2022]
16	-	-	1	-	poda	pha			Phrantela daveyensis (KT313215)	3×10 ⁻⁹⁷	97.7	No genus of Truncatelloidea is registered in the BCP
11	-	-	1	-	Caenogastro	Littorinimor		Tateidae Hydrobiidae	Phrantela daveyensis (KT313215) Bythiospeum sp. (AF367664)	1×10 ⁻⁹³	97.7	No genera of family Tateidae or Hydrobiidae are registered in the BCP
12	1	-	-	-			Vanikoroidea	Eulimidae	Pyramidelloides angustus (AB930386) Hemiliostraca sp. (AB930383)	6×10 ⁻¹⁰⁴	100	No species of Pyramidelloides or Hemiliostraca have been registered in the BCP
13	-	8	6	-					Balcis eburnea (AF120519)	3×10 ⁻¹⁰⁸	100	The genus <i>Balcis</i> has been registered in the Gulf of California
14	-	1	6	-					Melanella acicula (AB930381)	1×10 ⁻¹⁰¹	98.2	Several species of the genus <i>Mellanela</i> have been registered in the Gulf of California, and the BCP
15	5	-	-	-				Hipponicidae	Cheilea pileopsis (AB930397) Hipponicidae sp (MW204059)	3×10 ⁻¹⁰²	100	The species <i>Cheilea cepacea</i> has been registered in the BCP
18	7	-	-	-		nimorpha		Vanikoridae	Vanikoro helicoidea (AB930395)	2×10 ⁻¹⁰⁰	97.7	The species <i>Vanikoro aperta</i> has been registered in the Gulf of California but not in the BCP
70	-	1	-	-		Littori	Naticoidea	Naticidae	Sinum haliotoideum (FJ623466)	8×10 ⁻⁹⁹	98.1	Several species of the genus <i>Sinum</i> have been registered in the BCP
17	-	-	-	1			Conoidea	Several families	Several species	2×10 ⁻¹²⁵	99.6	No information available
19	-	1	-	-	oda	la	Buccinoidea	Several families	Several species	4×10 ⁻¹⁰⁰	99.5	No information available
20	-	-	2	-	strop	odo		Several families	Several species	5×10 ⁻¹⁰⁵	100	No information available
21	2	-	-	-	Caenogas	Neogastr	Muricoidea	Muricidae	Coralliophila caribaea (MW204229)	2×10 ⁻¹⁰³	99.5	Several species of the genus <i>Coralliophila</i> have been registered in the Gulf of California, and the BCP
22	-	-	-	2	oda	Neogastropoda	Muricoidea	Muricidae	Several species	6×10 ⁻¹²⁴	100	Several families of the genus <i>Coralliophila</i> have been registered in the Gulf of California, and the BCP
23	-	-	-	2	Caenogastrop	Ptenoglossa	Triphoroidea	Cerithiopsidae	Unclassified Cerithiopsidae	3×10 ⁻¹²²	99.6	Several genera of family Cerithiopsidae are found in the BCP
24	7	3	1	-			Akeroidea	Akeridae	Akera bullata (AY427502)	3×10 ⁻¹¹³	99.6	The species <i>Akera maga</i> has been registered in the BCP

Table 2. Continued

	Sampling stations		ons	Тах	onomy (of hits			GenBank characteris	hits stics	Notes on possible species in the study region (the Pacific coast of the BCP) based	
MOTU	CT-01	LB-01	LB-10	LB- 07	Subclass	Order	Superfamily	Family	Genera and species (GenBank accession number)	Е	% Identity	on the Global Biodiversity Information Facility web [https://www.gbif.org- Consulted: Jan, 14 2022]
25	3	-	-	-		iida	Aplysioidea	Aplysiidae	Stylocheilus longicauda (DQ093439) Dolabrifera dolabrifera (DQ237960)	3×10 ⁻¹¹²	100	The species <i>Stylocheilus ricketsii</i> has been registered in the BCP and the Gulf of California. The species <i>Dolabrifera</i> <i>dolabrifera</i> has been registered in the Gulf of California
26	-	1	1	-		Aplys			<i>Aplysia californica</i> (XR_004859253)	6×10 ⁻¹¹⁵	99.6	The species <i>Aplysia californica</i> has been registered in the BCP
27	2	-	1	-			Bulloidea	Bullidae	Bulla vernicosa (DQ923452)	6×10 ⁻¹⁰⁵	97.8	Several species of the genus <i>Bulla</i> are registered in the BCP
28	-	-	1	-				Haminoeidae	Liloa mongii (MH933263) Atys curta (DQ923459)	9×10 ⁻¹¹³	100	There are no records of <i>Liloa</i> or <i>Atys</i> for the BCP
29	-	-	1	-	chia	lea	Diaphanoidea	Diaphanidae	Diaphana globosa (MH933321)	1×10 ⁻¹⁰⁷	98.2	<i>Diaphana californica</i> has been registered in the BCP
30	1	-	-	-	Heterobranc	Cephalaspic	Philinoidea	Cylichnidae	Acteocina lepta (MH933295)	6×10 ⁻¹¹⁰	99.1	Several species of the genus <i>Acteocina</i> have been registered in the BCP
31	3	-	-	-		pidea	Philinoidea	Cylichnidae	Acteocina lepta (MH933295)	7×10 ⁻⁹⁰	99.5	Several species of the genus <i>Acteocina</i> have been registered in the BCP
32	1	-	1	-		Cephalas		Laonidae	Laona confusa (MH933303)	6×10 ⁻⁹⁰	94.3	<i>Laona californica</i> has been registered in a northern region of the BCP
33	-	1	1	-		Ellobiida	Ellobioidea	Ellobiidae	Melampus bullaoides (KM280980)	7×10 ⁻¹¹⁴	100	Several species of the genus <i>Melampus</i> have been registered in the BCP
35	-	1	-	-		Euthyneura	Pyramide- lloidea	Pyramidellidae	Turbonilla elegantissima (GU331941)	3×10 ⁻⁹²	96.7	Several species of the genus <i>Turbonilla</i> have been registered in the BCP
36	-	2	-	-			Anadoridoidea	Polyceridae	Plocamopherus aurantinodulosa (EF534011)	8×10 ⁻⁹⁴	93.7	There are no records of <i>Plocamopherus</i> for the BCP
37	-	-	1	-			Fionoidea	Trinchesiidae	Phestilla sp. (MK088224)	2×10 ⁻¹⁰⁴	97.4	<i>Phestilla lugubris</i> has been registered in the Gulf of California
43	-	-	1	-			Fionoidea	Eubranchidae	Eubranchus sanjuanensis (GQ326909)	2×10 ⁻¹⁰⁰	96.5	Several species of the genus <i>Eubranchus</i> have been registered in the BCP
38	-	1	-	-			Dendrono-toidea	Dotidae	Doto columbiana (GQ326881)	1×10 ⁻¹²²	98.8	<i>Doto columbiana</i> has been registered in a northern region of the BCP
39	-	-	1	-					Doto columbiana (GQ326881)	3×10 ⁻¹¹⁸	97.6	<i>Doto columbiana</i> have been registered in a northern region of the BCP
40	-	1	-	-	anchia	chia	Anadoridoidea	Onchidorididae	Corambe pacifica (KP340341)	1×10 ⁻¹⁰⁶	97.8	<i>Corambe pacifica</i> has been registered in the BCP
41	-	-	1	-	Heterobra	Nudibran	Eudoridoidea	Chromodorididae	Mexichromis porterae (EF534014)	3×10 ⁻¹⁰⁸	97.8	Two species of <i>Mexichromis (M. antonii, M. tura)</i> have been registered in the Gulf of California

Table 2. Continued

	Sampling stations		ons	Taxonomy of hits						hits stics	Notes on possible species in the study region (the Pacific coast of the BCP) based	
MOTU	CT-01	LB-01	LB-10	LB- 07	Subclass	Order	Superfamily	Family	Genera and species (GenBank accession number)	Е	% Identity	 on the Global Biodiversity Information Facility web [https://www.gbif.org- Consulted: Jan, 14 2022]
42	-	-	1	2		inchia	Eudoridoidea	Chromodorididae	Diversidoris aurantinodulosa (EF534011)	5×10 ⁻¹¹¹	94.1	There are no records of <i>Diversidoris</i> for the BCP
44	1	-	4	-		Nudibra			Diversidoris aurantinodulosa (EF534011)	4×10 ⁻⁹²	94	There are no records of <i>Diversidoris</i> for the BCP
45	-	2	2	-		Pleurobranchida	Pleurobran- choidea	Pleurobranchidae	Berthella stellata (AY427495)	9×10 ⁻⁷³	90.5	<i>Berthella idiomorpha</i> has been registered in the BCP
46	-	2	-	-			Thecosomata (Suborder)	Desmopteridae	Desmopterus papilio (GU969171)	3×10 ⁻¹¹²	99.6	Desmopterus papilio and D. pacificus have been registered in the Gulf of California
47	-	2	-	1					Desmopterus papilio (GU969171)	2×10 ⁻¹³⁵	99.6	(Angulo-Campillo et al., 2011) and the BCP (Molina-González et al., 2018; Sánchez-
48	-	3	-	-					Desmopterus sp. (MW203406)	2×10 ⁻¹¹⁵	100	Hidalgo y Anda, 1994).
49	-	2	3	-		ooda			Desmopterus sp. (MW203406)	2×10 ⁻¹⁰³	99.1	
50	-	-	-	1		Pterop			Desmopterus papilio (GU969171)	9×10 ⁻¹³⁴	99.3	
51	-	1	-	-	Heterobranchia	Heterostropha	Pyramide- lloidea	Pyramidellidae	<i>Hinemoa</i> sp. (GU331936)	2×10 ⁻¹⁰⁵	97.8	The genus <i>Hinemoa</i> has not been registered in the BCP
52	1	-	-	-			Limapontioidea	Caliphyllidae	<i>Polybranchia</i> sp. (MH375070)	1×10 ⁻¹¹¹	99.6	<i>Polybranchia mexicana</i> has been registered in the BCP
53	-	1	-	-					<i>Polybranchia</i> sp. (MH375067)	2×10 ⁻¹⁰⁹	99.1	<i>Polybranchia mexicana</i> has been registered in the BCP
54	1	-	1	-					<i>Polybranchia</i> sp. (MH375070)	4×10 ⁻⁹⁶	96	<i>Polybranchia mexicana</i> has been registered in the BCP
55	-	1	-	-					Mourgona sp. (MH375064)	1×10 ⁻⁹⁶	96.4	The genus <i>Mourgona</i> has not been registered in the BCP
56	-	-	1	-					Mourgona sp. (MH375064)	3×10 ⁻⁹⁷	96.4	The genus <i>Mourgona</i> has not been registered in the BCP
57	1	7	10	2				Limapontiidae	Aplysiopsis minor (AB501328)	1×10 ⁻¹²⁷	98.9	<i>Aplysiopsis enteromorphae</i> has been registered in the BCP
58	-	-	1	-					Aplysiopsis minor (AB501328)	1×10 ⁻¹²⁷	98.9	<i>Aplysiopsis enteromorphae</i> has been registered in the BCP

Table 2. Continued

	San	npling	statio	ons	Tax	onomy	of hits			GenBank hits characteristics		Notes on possible species in the study region (the Pacific coast of the BCP) based	
MOTU	CT-01	LB-01	LB-10	LB- 07	Subclass	Order	Superfamily	Family	Genera and species (GenBank accession number)	Е	% Identity	 on the Global Biodiversity Information Facility web [https://www.gbif.org- Consulted: Jan, 14 2022] 	
34	5	-	1	-	nchia				Stiliger smaragdinus (AB501324)	3×10 ⁻⁹⁷	96.4	<i>Stiliger fuscovittatus</i> have been registered in the BCP	
59	1	-	-	-	Heterobra	Sacogloss	Oxynooidea	Oxynoeidae	<i>Oxynoe viridis</i> (AB501318) <i>Oxynoe antillarum</i> (FJ917441)	1×10 ⁻¹²¹	100	<i>Oxynoe aliciae</i> , <i>O. viridis</i> and <i>O. panamensis</i> have been registered in the Gulf of California	
60	17	-	-	-	norpha	neritida	Neritoidea	Neritidae	Nerita tessellata (FJ977654) Nerita funiculata (DQ093429)	7×10 ⁻¹⁰⁴	99.1	Nerita funiculata and Nerita tessellata have not been registered in the BCP	
61	13	-	-	-	Neritii	Cyclo			Nerita funiculata (DQ093429)	4×10 ⁻¹⁰⁶	100	<i>Nerita funiculata and Nerita tessellata</i> have not been registered in the BCP	
62	2	-	-	-	_	_	Neritoidea	Neritidae	Nerita tessellata (FJ977654)	4×10 ⁻¹⁰⁶	100	<i>Nerita funiculata and Nerita tessellata</i> have not been registered in the BCP	
63	1	-	-	-	morpha	neritida		Neritidae	Nerita funiculata (DQ093429)	5×10 ⁻¹⁰⁵	99.5	<i>Nerita funiculata and Nerita tessellata</i> have not been registered in the BCP	
64	-	-	2	-	Neritii	Cyclo		Phenacole- padidae	Phenacolepas osculans (AY923890)	1×10 ⁻¹⁰⁵	100	<i>Phenacolepas osculans</i> has been registered in the Gulf of California	
65	-	-	-	1	Patellogastropoda		Lottioidea	Lottiidae	Lottia gigantea (KP274858) Lottia scabra (GQ160769) Lottia jamaicensis (FJ977633)	6×10 ⁻¹⁵¹	100	Several species of the genus <i>Lottia</i> have been registered in the BCP	
66	-	-	-	1			Fissurelloidea	Fissurellidae	Fissurella sp. (MK331687) Fissurella virescens (MK322194) Fissurella volcano (HM775293)	2×10 ⁻¹²⁹	100	<i>Fissurella volcano</i> and other <i>Fissurella</i> species have been registered in the BCP	
67	-	1	-	-	la	Lepetellida	Haliotoidea	Haliotidae	Haliotis corrugata (HM775288) Haliotis fulgens (HM775289)	3×10 ⁻¹⁰²	100	<i>Haliotis corrugata</i> and <i>Haliotis fulgens</i> have been registered in the BCP	
68	4	-	-	-	Vetigastropoo	Trochida	Trochoidea	Turbinidae	Megastrea undosa (KY766259) Turbo sp. (KY766259) Lunella sp. (EU530105)	1×10 ⁻⁹⁵	100	Several genera of family Turbinidae are found in the BCP	
69	-	1	-	-	Vetigastropoda	Trochida	Trochoidea	Phasianellidae	Tricolia pullus (AM048661)	6×10 ⁻⁸⁵	94.1	There are no species of the genus <i>Tricolia</i> registered in the BCP	
71	-	15	6	-	Gas	tropoda	unclassified (MW	/203299)		3×10 ⁻¹⁰¹	99.1		
Σ	89	78	70	65									

Figure 2. Gastropod mollusks obtained from a plankton tow from La Bocana. Scale = approx. 200 μ m.

Discussion

A relatively high planktonic gastropod diversity was observed in the present study as compared to that found in 2 sites of the Caribbean Sea: 31 species (Oliva-Rivera & Navarrete, 2007) and 34 species (Chávez-Villegas et al., 2014), but lower than the 62 holoplanktonic species from the Gulf of California (Angulo-Campillo et al., 2011), the 6 species of the order Thecosomata (Sánchez-Hidalgo y Anda, 1989), and the 18 species of the family Atlantidae off the BCP (Aceves-Medina et al., 2020; Moreno-Alcántara et al., 2020). Nevertheless, according to a preliminary rarefaction analysis (results not shown due to reduced sample size) the actual species diversity in our study region is probably under-represented. To overcome the sample size issue, which is mainly due to budget constraints, new research technologies such as environmental DNA (eDNA) metabarcoding are broadening the sampling possibilities (Mychek-Londer et al., 2020).

Differences in community composition between the sampling sites of CT and LB (Fig. 1) would be expected as environmental conditions are usually distinct. Personal observations indicated that both sites are mainly composed of rocky bottoms and a few sandy flats, with a higher abundance of macroalgae at LB than at CT, and clearer waters at CT than LB. These differences, which are probably due to a higher productivity at LB, are explained by the position of the sites relative to the Magdalena

Figure 3. Minimum spanning network from 18S rDNA sequences per MOTUs. Background shades represent gastropod subclasses.

Figure 4. MOTUs' Shannon-Weaver diversity index, using the natural logarithm, per towing station.

Biological Activity Center (MBAC) (Lluch-Belda, 2000), with year-round cooler waters at LB (north of MBAC) than at CT (south of MBAC) (Jerónimo & Gómez-Valdés, 2006). In contrast, the differences in MOTUs composition among stations within LB let us hypothesize that planktonic gastropod distribution within a specific area is probably modulated by micro-environmental processes such as currents and biological events (Hernández-Trujillo et al., 2001). For example, many Cypraeidae individuals at LB-07 points to a massive spawning event in that area.

Even though 18S rDNA has been proposed for biodiversity studies (Ranjithkumar et al., 2018), it generally fails to separate species (Aranceta-Garza et al., 2011; Wu et al., 2015). In addition, the lack of a comprehensive database of gastropod 18S rDNA sequences from the western coast of the Baja California Peninsula limits the capacity of proper species identification. For example, the report of Angulo-Campillo et al. (2011) indicates the presence of several Atlantidae or Desmopteridae species, which in our case could not be distinguished (Table 2). Thus, future studies will require additional genetic markers, such as the 16S rRNA or COI genes (e.g., Crocetta et al., 2020).

The putative presence of molluskan MOTUs not recorded in the study region can be explained by either the low number of 18S rDNA sequences in the public databases, the lack of differences among species in this gene sequence of the same genus or family, and the lack of physical records of those specimens in the study region. In any case, efforts should be devoted to increase the number of gastropod 18S rDNA sequences and other genes in the databases and to promote frequent survey campaigns to detect previously undescribed species in this region. This is particularly relevant because mollusks are gaining attention within climate change research, not only to study phenotypic plasticity and genetic variation (Matoo & Neiman, 2021), but also because of their utility to act as indicators of climatic variability (Molina-González et al., 2018). Also, eDNA metabarcoding, which can be used to detect diverse ecological phenomena such as potential species invasions (e.g., Mychek-Londer et al., 2020), requires solid supporting information.

The presence of non-gastropod sequences within the analyzed individuals is a phenomenon that requires further attention. Even though we cannot rule out the possibility of cross-contamination, these individuals were visualized as planktonic gastropods (Supplementary material: Fig. S1), so it is unlikely that individuals of Cnidaria (order Bivalvulida), and Arthropoda (orders Euphausiacea, and Calanoida) were mistakenly put into the PCR tubes. We also consider that their presence as stomach content or as epibionts was unlikely because when mixed DNA is individually sequenced, it is not possible to separate the signature of each species. Rather, we hypothesize that these sequences might come from eggs or larvae of those other taxa that use gastropod shells as a substratum.

Acknowledgements

Sampling was done under "Pesca de Fomento" permit No. DGOPA.03182.290410.-1591. A. Arciniega received a scholarship from Conacyt (No. 41832). Conacyt provided funds for the project "Conectividad entre poblaciones de moluscos bentónicos marinos, estudio de caso: abulón *Haliotis* spp." No. 2007-79482 to R.P.E. Fishermen cooperatives "Meliton Albañez" and "Progreso" supported sampling facilities. J. Cruz Hernández provided technical support during plankton tows. M. C. Rodríguez Jaramillo and R. Inohuye-Rivera provided technical assistance for planktonic gastropod photographic documentation. S. Avila gave technical support with genetic analyses. R. Llera-Herrera provided useful comments.

References

- Aceves-Medina, G., Moreno-Alcántara, M., Durazo, R., & Delgado-Hofmann, D. (2020). Distribution of Atlantidae species (Gastropoda: Pterotracheoidea) during an El Niño event in the Southern California Current System (summerfall 2015). *Marine Ecology Progress Series*, 648, 153–168. https://doi.org/10.3354/meps13417
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215, 403–410. https://doi.org/10.1016/ S0022-2836(05)80360-2

- Angulo-Campillo, O., Aceves-Medina, G., & Avedaño-Ibarra, R. (2011). Holoplanktonic mollusks (Mollusca: Gastropoda) from the Gulf of California, México. *Check List*, 7, 337–342.
- Aranceta-Garza, F., Perez-Enriquez, R., & Cruz, P. (2011). PCR-SSCP method for genetic differentiation of canned abalone and commercial gastropods in the Mexican retail market. *Food Control*, 22, 1015–1020. https://doi.org/10.1016/j. foodcont.2010.11.025
- Bandel, K., Riedel, F., & Weikert, H. (1997). Planktonic gastropod larvae from the Red Sea: a synopsis. *Ophelia*, 47, 151–202.
- Bandelt, H., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. *Molecular Biology and Evolution*, 16, 37–48.
- Beers, J. R. (1976). Determination of zooplankton biomass. In H. F. Steedman (Ed.), *Zooplankton, fixation and preservation. Monographs on oceanographic methodology*, No. 4 (pp. 54–60). Paris: The UNESCO Press.
- Campos, B., & Landaeta, M. F. (2016). Moluscos planctónicos entre el fiordo Reloncaví y el golfo Corcovado, sur de Chile: ocurrencia, distribución y abundancia en invierno. *Revista de Biología Marina y Oceanografía*, 51, 527–539. http://dx.doi. org/10.4067/S0718-19572016000300005
- Chávez-Villegas, J. F., Enríquez-Díaz, M., & Aldana-Aranda, D. (2014). Abundancia y diversidad larval de gasterópodos en el Caribe Mexicano en relación con la temperatura, la salinidad y el oxígeno disuelto. *Revista de Biología Tropical*, 62, 223–230.
- Courtois de Viçose, G., Viera, M. P., Bilbao, A., & Izquierdo, M. S. (2007). Embryonic and larval development of *Haliotis tuberculata coccinea* Reeve: an indexed micro-photographic sequence. *Journal of Shellfish Research*, 26, 847–854. https://doi.org/10.2983/0730-8000(2007)26[847:EALDOH] 2.0.CO;2
- Crocetta, F., Caputi, L., Paz-Sedano, S., Tanduo, V., Vazzana, A., & Oliverio, M. (2020). High genetic connectivity in a gastropod with long-lived planktonic larvae. *Journal of Molluscan Studies*, 86, 42–55. https://doi.org/10.1093/ mollus/eyz032
- Hernández-Trujillo, S., Gómez-Ochoa, F., & Verdugo-Díaz, G. (2001). Dinámica del plancton en la región sur de la Corriente de California. *Revista de Biología Tropical*, 49, 15–30.
- Jerónimo, G., & Gómez-Valdés, J. (2006). Mean temperature and salinity along an isopycnal surface in the upper ocean off Baja California. *Ciencias Marinas*, 32, 663–671. https:// doi.org/10.7773/cm.v32i4.1164
- Leigh, J. W. & Bryant, D. (2015). POPART: full-feature software for haplotype network construction. *Methods in Ecology and Evolution*, 6, 1110–1116. https://doi.org/ 10.1111/2041-210X.12410
- León-Carballo, G., & Muciño-Díaz, M. (1996). Pesquería de abulón. In M. Casas-Valdez, & G. Ponce-Díaz (Eds.), *Estudio potencial pesquero y acuícola de Baja California Sur. Vol. I.* (pp. 15–41). La Paz, Baja California Sur: Centro de Investigaciones Biológicas del Noroeste, S.C.

- Lluch-Belda, D. (2000). Centros de actividad biológica en la costa occidental de Baja California. In D. Lluch-Belda, J. Elorduy-Garay, S. E. Lluch-Cota, & G. Ponce-Díaz (Eds.), *BAC: centros de actividad biológica del Pacífico mexicano* (pp. 49–64). La Paz, Baja California Sur: Centro de Investigaciones Biológicas del Noroeste, S.C.
- Matoo, O. B., & Neiman, M. (2021). Bringing disciplines and people together to characterize the plastic and genetic responses of molluscs to environmental change. *Integrative* and Comparative Biology, 61, 1689–1698, https://doi. org/10.1093/icb/icab186
- Molina-González, O., Lavaniegos, B. E., Gómez-Valdés, J., & De la Cruz-Orozco, M. (2018). Holoplanktonic mollusks off Western Baja California during the weak El Niño 2006-07 and further transition to La Niña. *American Malacological Bulletin*, 36, 79–95. https://doi.org/10.4003/006.036.0112
- Moreno-Alcántara, M., Delgado-Hofmann, D., & Aceves-Medina, G. (2020). Diversity of Atlantidae mollusks (Gastropoda: Pterotracheoidea) from the southern region of the California current off Baja California peninsula, Mexico. *Marine Biodiversity*, 50, 27. https://doi.org/10.1007/ s12526-020-01059-7
- Mychek-Londer, J. G., Balasingham, K. D., & Heath, D. D. (2020). Using environmental DNA metabarcoding to map invasive and native invertebrates in two Great Lakes tributaries. *Environmental DNA*, 2, 283–297. https://doi. org/10.1002/edn3.56
- Oksanen, J., Guillaume-Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D. et al. (2020). Vegan: community ecology package. R package version 2.5-7. Consulted on October 13, 2022 from: https://github.com/vegandevs/vegan
- Oliva-Rivera, J. J., & Navarrete, A. J. (2007). Larvas de moluscos gasterópodos del sur de Quintana Roo, México. *Hidrobiológica*, 17, 151–158
- R Core Team (2013). R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. Consulted on October 13, 2022 from: http:// www.R-project.org/
- Ranjithkumar, K., Sudhan, C., Utsa, R., & Madhusudhana, R. B. (2018). Ribosomal RNA and their applications in species identification. *Journal of Aquaculture in the Tropics*, 33, 91–99. https://doi.org/10.32381/JAT.2018.33.01.8
- Roegner, G. C. (2000). Transport of molluscan larvae through a shallow estuary. *Journal of Plankton Research*, 22, 1779– 1800. https://doi.org/10.1093/plankt/22.9.1779
- Rozas, J., Ferrer-Mata, A., Sánchez-Del Barrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E. et al. (2017). DnaSP v6: DNA sequence polymorphism analysis of large datasets. *Molecular Biology and Evolution*, 34, 3299–3302. https://doi.org/10.1093/molbev/msx248
- Sánchez-Hidalgo y Anda, M. (1989). Gasterópodos holoplanctónicos de la costa occidental de Baja California Sur, en mayo y junio de 1984. *Investigaciones Marinas CICIMAR*, 4, 1–14.
- Schoch, C. (2011). NCBI Taxonomy. Apr 7 [Updated 2020 Feb 11]. In Taxonomy help [Internet]. Bethesda (MD): National

Center for Biotechnology Information (US). Consulted on October 13, 2022 from: https://www.ncbi.nlm.nih.gov/ books/NBK53758/

- Selvamani, M. J. P., Degnan, S. M., & Degnan, B. M. (2001). Microsatellite genotyping of individual abalone larvae: parentage assignment in aquaculture. *Marine Biotechnology*, 3, 478–485. https://doi.org/10.1007/s1012601-0062-x
- Simons, R. A. (2022). ERDDAP. Monterey, CA: NOAA/NMFS/ SWFSC/ERD. Consulted on October 13, 2022 from: https:// coastwatch.pfeg.noaa.gov/erddap
- Smith, P. E., & Richardson, S. L. (1979). Técnicas modelo para prospecciones de huevos de larvas de peces pelágicos. Documento Técnico de Pesca (FAO) spa no. 175. Rome, Italy: FAO.
- Wu, S., Xiong, J., & Yu, Y. (2015) Taxonomic resolutions based on 18S rRNA genes: a case study of Subclass Copepoda. *Plos One*, 10, e0131498. https://doi.org/10.1371/journal. pone.0131498