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Abstract 
Ambystoma dumerilii, known as “achoque”, is a microendemic salamander from Lake Pátzcuaro, considered as a 

critically endangered species according to the IUCN (2020). The main threats are high levels of water contamination, 
high levels of eutrophication in addition to the fact that invasive species can be found within the “achoque” habitat. For 
these reasons, an important conservation effort has been the maintenance of “achoque” in captivity. However, captivity 
is known to be a stressor derived from non-optimal conditions that can have important physiological consequences 
that are reflected in body conditions. Therefore, our objective was to evaluate the condition of A. dumerilii individuals 
through a morphological analysis using different parameters such as morphological character sizes, geometric 
morphometrics, fluctuating asymmetry and allometry, in individuals from Lake Pátzcuaro and captivity. We found that 
almost all the traits have a negative allometric relationship with the body size in individuals from both conditions. Our 
results showed that individuals from the lake presented greater sizes, slimmer bodies and higher levels of fluctuating 
asymmetry than captive individuals, all results are consistent in the context of performance with greater potential 
adaptations to increase swimming performance than individuals from captivity.

Keywords: Ambystoma; Achoque; Allometric patterns; Fluctuating asymmetry; Geometric morphometrics; Habitat 
perturbation
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Introduction

The family Ambystomatidae is composed of the genus 
Ambystoma, with 35 species distributed from southern 
Canada and Alaska to the southern limit of the Mexican 
highlands (Casas-Andreu et al., 2004). In Mexico, there are 
17 species of which 15 are classified in some risk category 
according to the NOM-059-Semarnat-2010 (Ortega, 
1999). Specifically, A. dumerilii, known as “achoque”, 
is a micro-endemic salamander from Lake Pátzcuaro, 
whose population is close to extinction (Zambrano et al., 
2011), and even considered a critically endangered 
species according to the IUCN (2020), as well as being 
under special protection by Semarnat (2010). Like other 
members of the Ambystomatidae family, this species is 
very sensitive to anthropogenic activities (Soto-Rojas et al., 
2017). For example, in Ambystoma ordinarium an increase 
in the frequency of morphological abnormalities related 
to habitat degradation has been described (Soto-Rojas 
et al., 2017). In the same species, a high parasitic infection 
was found associated with disturbed streams (Ramírez-
Hernández et al., 2019). The conditions of Lake Pátzcuaro 
have deteriorated due to the high disturbance derived 
from anthropogenic factors such as changes in land use, 
contamination by wastewater, herbicides and pesticides 
(Zambrano et al., 2011). It is in a eutrophic state due to 
high levels of nitrogen and phosphorous, it has decreased 
in depth by 6 m since 1939 and has sedimentation rates 
of around 100,000 m3 each year (Ramírez-Herrejón et al., 
2014; Tomasini-Ortiz et al., 2016). According to Aguilar-
Miguel (2005) Ambystoma dumerilii has a restricted area 
of occupancy of less than 10 km2. 

The endemic nature of A. dumerilii and the critical 
status of the habitat has led to breeding this species in 
captivity as a conservation strategy (Huacuz-Elías, 
2002; IUCN SSC Amphibian Specialist Group, 2020). 
Therefore, the maintenance of “achoques” is vital to 
enhance conservation efforts. However, captive amphibian 
populations can present morphological and physiological 
problems associated with long-term stress derived from 
non-optimal conditions (Assis et al., 2015; Michaels et al., 
2014; Titon et al., 2017). One of the main problems is the 
adaptability of organisms to captive conditions, since there 
are species of salamanders that have highly specialized 
microclimate and microhabitat requirements, therefore 
replicating these conditions in captivity is complicated, as 
is the case of Ambystoma cingulatum. The maintenance 
of the appropriate temperature for organisms is also 
important to avoid infectious diseases caused by bacteria, 
parasites and fungi. If the water quality is poor due to 
inadequate filtering and continuous replacement, it can 
contain dissolved substances such as ammonia, urea or 
toxins (de Vosjoli, 1999). An inadequate diet with low 
nutritional intake also has negative effects on development 
(Slight et al., 2015). 

Regardless of the stress source, amphibian response 
underlies shaping an organism’s phenotype (Denver, 2009). 
A permanent stress source induces an overproduction of 
glucocorticoids, the stress hormones, that negatively affect 
amphibian growth and induce changes in their morphology 
(Davis & Maerz, 2010; Davis & Maney, 2018; Davis 
et al., 2020; Gangenova et al., 2020), leading to permanent 
alterations in morphology (Brunson et al., 2001; Matthews, 
2002; Hu et al., 2008). Morphological changes in 
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amphibians occur during their ontogenetic development, 
from the larval phase to the adult stage (Shi et al., 1996; 
Steinicke et al., 2015). Hence, amphibians of the same 
species show different morphological forms, depending 
on the degree of stress suffered during their development 
(Tejedo et al., 2010). Morphological changes derived 
from environmental stress involve different morphological 
parameters, such as size and shape of morphological traits, 
allometric patterns, and fluctuating asymmetry.

Environmental stress decreases growth with smaller size 
at metamorphosis (Cayuela et al., 2017; Delgado-Acevedo 
& Restrepo, 2008; Iglesias-Carrasco et al., 2017). Changes 
in morphology (Denver et al., 1998; Relyea & Hoverman, 
2003) and the shape and size of morphological traits also 
vary in predictable ways in response to environmental 
stress (Morrison et al., 2004; Phillips et al., 2006). For 
example, amphibians can develop smaller hindlimbs in 
individuals present in fragmented habitats (Delgado-
Acevedo & Restrepo, 2008; Steinicke et al., 2015).

Variation in morphological traits often scales with 
overall body size, defined as morphological allometry 
(Fairbairn, 1997, Shaffer, 1984). However, the degree 
of such correspondence can range from nearly perfect 
covariance of a trait with body size (i.e., isometry) to highly 
uncorrelated, where specific morphological traits change at 
a different rate than the body size (i.e., allometry). Positive 
allometry occurs when morphological characters have 
greater growth than body size, while negative allometry is 
associated with lower growth of morphological characters 
than body size (Fairbairn, 1997; Fox et al., 2015). Changes 
in allometric patterns can influence amphibian fitness 
(Delgado-Acevedo & Restrepo, 2008; Tejedo et al., 2010). 
For example, in salamanders, the scaling relationships of 
head shape with body size have been related to larval diet 
and predation risk (Shaffery & Relyea, 2015; Van Buskirk, 
2011). In addition, positive allometric relationships 
between head and body size improve the vocal efficiency 
of frogs in a sexual selection context (Riva-Tonini  
et al., 2020). 

Stressful conditions induce changes during development 
that result in morphological asymmetry (Lens et al., 2002; 
Wright & Zamudio, 2002), such as fluctuating asymmetry 
(FA) that measure slight (Zhelev et al., 2014), random 
deviations of bilateral symmetrical traits, reflecting 
developmental instability of the organisms. In disturbed 
or high stress environments, metamorphosis and growth 
can be accelerated (Lowe et al., 2006), leading to higher 
FA (Møller & Manning, 2003). For example, Pelophylax 
ridibundus and Pseudepidalea viridis showed higher FA in 
sites with high levels of anthropogenic disturbance (Zhelev 
et al., 2014). In a similar study, Pelophylax ridibundus in 
highly contaminated sites, presented high levels of FA 

where they evaluated the levels of FA in 10 morphological 
traits while individuals in uncontaminated sites presented 
FA in 3 morphological characters (Zhelev et al.,  
2015, 2019).

Understanding how amphibians respond phenotypically 
to environmental changes resulting from habitat disturbance 
is an important challenge to detecting the degree of 
susceptibility to new stressful environments and then 
proposing conservation strategies (Lomolino et al., 2001). 
Amphibians show morphological plasticity to adjust to a 
changing environment such as predator presence, habitat 
quality, competitors, and stressful conditions (Johansson 
et al., 2010; Relyea, 2001; Relyea & Hoverman, 2003; 
Stoler & Relyea, 2013). Due to the deterioration of Lake 
Pátzcuaro and the stress induced in captivity, we expected 
to find physiological stress in individuals of A. dumerilii 
that can be reflected in their morphological traits. 

Therefore, our objective was to evaluate the condition 
of A. dumerilii individuals through the analysis of the 
morphology of A. dumerilii, using different parameters 
such as morphological character sizes, geometric 
morphometrics, fluctuating asymmetry and allometry, 
in individuals from Lake Pátzcuaro and captivity. We 
hypothesized that the anthropogenic disturbance present in 
the lake and the maintenance of sub-optimal conditions in 
captivity would cause stress on the organisms, therefore, we 
expect to detect this using FA, geometric morphometrics 
and allometry patterns, with an increase under the most 
stressful condition. Our results will allow us to know the 
conditions of organisms in both populations, as well as 
provide useful information for future conservation and 
management plans of this species in its habitat, and for 
the improvement of captivity conditions. 

Materials and methods

We analyzed 107 individuals, 60 individuals from the 
lake (males and females) and 47 from captivity (males 
and females). All salamanders sampled were individuals 
classified as adults with a minimum snout-vent length 
(SVL) of 60 mm (Anderson & Worthington, 1971).

The captive salamanders were sampled at a 
management unit for wildlife conservation and sustainable 
use. At this center, A. dumerilii is bred in captivity. 
Captive individuals were born and raised in captivity. The 
salamanders are kept in a covered area that protects them 
from direct sunlight. Between 6 to 8 individuals are kept 
in oval recycled plastic tubs of approximately 180 L, with 
artificial shelters, natural aquatic plants and hiding places 
made of PVC. The containers are shallow, allowing them 
to move around mainly using their limbs. Temperatures 
were maintained around 17 °C ± 1°C. The “achoques” 
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were fed with a mixed diet of brine shrimp, fish fillets, 
tubifex (Tubificidae) and acociles (Procambarus sp.). The 
pH oscillated between 7.5 and 7.8. 

The wild specimens were sampled in Lake Pátzcuaro 
that is located in the western portion of the Transmexican 
Volcanic Belt (09°32’-19°42’ N, 101°32’-101°42’ W.) 
Sampling was carried out monthly from March 2019 to 
December 2020, using 180 metallic cylinder traps with 
a conical inlet, set at the bottom of the lake. To identify 
the “achoques” collected in the lake, we used a microchip 
marking system, to avoid resampling. The microchip 
marking system was initiated in 2018.

For all salamanders, we registered snout-vent length 
(SVL, mm) and total length (mm), using a digital caliper. 
The sex of each individual was determined based on the 
cloacal bulge. We used the SVL as a standard measure 
of body size (Gangenova et al., 2020). To analyze all 
morphological traits, we obtained a digital image from the 
dorsal part of each organism with a high-resolution camera 
(Sony α350), ensuring that all pictures were taken with 
the same objective and at the same distance (30 cm) with 
a scale. All pictures had a resolution of 14.2 megapixels. 
All images were used for the morphometric measurements, 
FA and allometry (Alarcón-Ríos et al., 2017; Soto-Rojas 
et al., 2017).

To determine differences in body shape between 
individuals from captivity and lake conditions, we used 
the photographs to measure the following morphometric 
traits: eye to eye distance (EED), head width (HW), head 
length (HL), body width (BW), total length (TL), tail 
width (TW), tail length (TLe), femur length right and 
left (FLR, FLL), tibia-fibula length right and left (TFLR, 
TFLL), radius-ulna length right and left (RULR, RULL), 
humerus length right and left (HLR, HLL) (Fig. 1A). The 
sizes were measured with the Image J 1.44 software. To 
analyze differences in morphological characters between 
both conditions, we used a one-way ANOVA test the 
lake and captivity effect. Individuals from the lake and 
captivity were considered as independent variables and 
morphological characters as dependent ones. 

For allometric relationships between body size and 
all morphological traits, we used the SLV as standard 
measure of body size. We compared captivity and lake 
conditions with normalized data to remove allometric 
effects, following the method developed by Lleonart 
et al. (2000). The theoretical equation adjusts the shape 
considering allometry and scales all individuals to the 
same size, and the absolute values of morphometric 
characters are standardized as follows: (Yi* = Yi (SVL0/
SVLi)b. Where Yi*: size-adjusted proportion character 
of specimen i; Yi: body character; SVL0: mean value 
of SVL; SVLi: SVL of specimen i; b: within-habitat 

treatment regression slope of log (Y) against log (SVL). 
We transformed all variables to log. We evaluated the 
effect of lake and captivity on SVL and its allometric 
relationship with morphological characters, applying an 
ordinary least squares regression between snout-vent 
length (x-axis: mm) and size of morphological characters 
(y-axis: mm) for individuals from the lake and captivity. 
We calculated the allometric slope for each regression. For 
those variables in which a correlation was identified, we 
applied an analysis of covariance (ANCOVA) to test the 
difference in regression slopes between individuals from 
the lake and captivity.

With the digital image obtained for each individual, we 
measured FA of abdomen and head (Fig. 1B). Fluctuating 
asymmetry was calculated as the absolute value of the 
difference among the distances from the middle to the left 
and right margins of the body part (|Ai - Bi|), divided by 
the average distance (Ai + Bi / 2), to correct for the fact 
that asymmetry may be size-dependent. Additionally, 10 
individuals were blindly re-measured, without reference to 
previous measurements to control the measurement error 
in FA. We then evaluated the degree of significance of FA 
relative to measurement error using two-way mixed-model 
ANOVA. The significance of the interaction (individual 
× body part × side) indicated that variation in FA was 
greater than expected by measurement error: (F9,25 = 22.4; 
p < 0.002).

Fluctuating asymmetry is found when the right-minus-
left (R-minus-L) differences are normally distributed with 
a mean value = 0, unlike directional asymmetry that is 
found when the R-minus-L differences are also normally 
distributed, but with a mean significantly different from 
0, and antisymmetry, characterized by a platykurtic or 
bimodal distribution of R-minus-L differences about 
a mean of 0 (Palmer & Strobeck, 1986). To determine 
whether our data fitted only FA and no other types of 
asymmetry, we performed a Student’s t test and Lilliefors’ 
normality test to evaluate whether mean values of signed 
R-minus-L values differed significantly from 0. We 
found that R-minus-L measurements did not differ from 
0 (t = 1.1; p > 0.05), and therefore, we discarded the 
presence of directional asymmetry in our data. In the 
same way, we also reject the presence of antisymmetry 
because our data (R-minus-L) exhibited a normal 
distribution (p > 0.05). Once determined that our data 
fitted only in FA criterium, we used an analysis of variance 
(ANOVA) to determine the differences in FA levels 
between individuals that occur in the lake and captivity 
condition. In all cases, the normality was tested after  
suitable transformations. 

Differences in body morphology between individuals 
that occur in the lake and captivity conditions, were 
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analyzed using geometric morphometric techniques (Vega-
Trejo et al., 2014). Each individual was photographed 
separately. We used grid lines as guides in order to obtain 
the maximum vertical image. In each image, 22 landmarks 
type II landmarks were placed along the corporal shape 
of the salamanders and 2 additional landmarks over the 
centimeter as size reference to record the coordinates 
(x, y) of the 22 landmarks in each salamander image 
(Cuevas-Reyes et al., 2018) (Fig. 2). The type of 
landmarks used are classified as homologous type II 
landmarks, since they represented pairs of points in the 
places with greater curvature from the body shape (sensu 
Bookstein, 1997). For the application of landmarks, the 
TPS software package was used (Rohlf, 2015). Then, a 
Procrustes superimposition analysis was performed using 
the Integrated Morphometrics Package (IMP series: http://
www.canisius.edu/~sheets/morphsoft.html) to align the 
landmark coordinates and eliminate size effect (Vega-
Trejo et al., 2014). This Procrustes superimposition 
analysis rescales, translates, and rotates (using a least-
squares criterion) the raw landmark coordinates in order 
to eliminate any non-shape variation (Bookstein, 1997; 
Klingenberg, 2003). The mean configuration of all 

individuals for this condition was considered as reference 
of shape variables (Procrustes distances) and calculated 
by a superimposition coordinates analysis (Cuevas-
Reyes et al., 2018). We applied a principal component 
analysis (PCA) to determine shape differences between 
lake and captivity conditions (Cuevas-Reyes et al., 
2018). The PCA test produces ordination plots indicating 
the differences in the shape of the salamanders. These 
analyses were performed in MorphoJ software v1.07a  
(Klingenberg, 2011).

Results

We found differences in morphological characters 
between both populations, with individuals from the lake 
with a larger head width, head length, total length, tail 
width, tail length, femur length of left side, tibia-fibula 
length of left side, radius-ulna length of right and left sides, 
humerus length of right and left sides, radius-ulna length 
of left and right side and SVL than individuals raised in 
captivity. In the case of body width, femur length right, 
tibia-fibula length right we did not find any differences 
(Table 1).

Figure 1. Individual of Ambystoma dumerilii with A) body measurements, B) traits measured for fluctuating asymmetry assessment.

http://www.canisius.edu/~sheets/morphsoft.html
http://www.canisius.edu/~sheets/morphsoft.html
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We observed significant allometric relationships 
in most of the traits in individuals of A. dumerilii from 
the lake and captivity. We found that almost all traits 
showed a negative allometric relationship with body size 
in individuals from the lake. In the case of tail width, 
radius-ulna length of left side, fibula length of left size 
showed an isometric relationship with body size in captive 
individuals. Femur length of left size showed a positive 
relationship (Table 2).

ANCOVA analyses showed significant differences 
between slopes in some allometric relationships of both 
habitat conditions. In individuals from the lake, the 
slopes of the allometric equations between body size and 
humerus length of right size and radius-ulna length of right 
side were significantly higher than in individuals from 
captivity (HLR: F = 77.6; p = 0.0001. RULR: F = 105.9; 
p = 0.0001). In the rest of traits, the slopes of the allometric 

equations were higher in individuals from captivity  
(HW: F = 10.68; p = 0.0001. HL: F = 4.1; p = 0.0001.  
BW: F = 112.7; p = 0.0001. TL: F = 47.6; p = 0.0001.  
TW: F = 62.23; p = 0.0001. TLe: F = 115.5; p = 0.0001. 
FLR: F = 41.02; p = 0.0001. TFLR: F = 28.7; p = 0.0001. 
FLL: F = 53.29; p = 0.0001. TFLL: F = 40.89; p = 0.0001). 

We found differences in FA between salamanders 
from the lake and those from captive conditions. Our 
results show higher FA in the body (F = 27.9, d. f.  = 1, 
p = 0.0001) and head (F = 47.1, d. f.  = 1, p = 0.067)  
of individuals sampled in the lake. 

Based on a coordinate superimposition analysis, we 
found differences in body shape between individuals of 
the lake and captivity (Fig. 3A), where the PC1 and PC2 
explained 58.8% and 13.3%, respectively. Two well-
segregated groups were formed between lake and captive 
individuals in our PCA (Fig. 3A). The wireframe graph 
based on Procrustes coordinates showed that body shape 
of individuals from the lake were slimmer than individuals 
from captivity (Fig. 3B). This difference in body shape 
between individuals from captivity and lake is supported 
by discriminant analysis, where both distances (values) of 
Mahalanobis (3.95) and Procrustes (0.046) were significant 
(p = 0.0001).

Discussion

Anthropogenic threats have led to the deterioration of 
the “achoque” (Zambrano et al., 2011), leading it to live 
under stressful conditions. The conservation alternative, 
captivity, necessary to face the imminent extinction of this 
endangered species, also represents stressful conditions 
derived from non-optimal environment (Michaels et al., 
2014). Morphological changes in amphibians occur 
during their ontogenetic development, from the larval 
phase to the adult stage (Shi et al., 1996; Steinicke et al., 
2015), hence amphibians of the same species can show 
different morphological forms, depending on the degree 
of stress suffered during their development (Tejedo et al., 
2010). Our results showed that individuals from the lake 
are larger, have higher FA and the slopes of allometric 
correlations of almost all traits were lower, suggesting 
that SVL increases faster according to morphological 
characters than those individuals in captivity. Conversely, 
individuals from captivity present shorter morphological 
traits and narrower bodies than individuals from the lake. 

In our study, individuals from the lake are larger than 
individuals from captivity. This result is the opposite to what 
would be expected if we hypothesize that the conditions 
in the lake were more stressful than those in captivity, 
and that amphibian exposure to environmental stressors 

Figure 2. Individual of Ambystoma dumerilii with 22 
morphological landmarks around the body shape and 2 more as 
reference size to measure geometrical morphology.
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Table 1
ANOVA of morphological characters in individuals of A. dumerilii from captivity and wildlife. Eye to eye distance (EED), head 
width (HW), head length (HL), body width (BW), total length (TL), tail width (TW), tail length (TLe), femur length right and left 
(FLR, FLL), tibia-fibula length right and left (TFLR, TFLL), radius-ulna length right and left (RULR, RULL), humerus length right 
and left (HLR, HLL). Numbers in bold indicate statistically significant differences. 

Character Lake Captivity d. f. F p

HW 4.678 ± 0.389 4.033 ± 0.228 1 102.17 0.0001
HL 4.496 ± 0.494 3.47 ± 0.528 1 106.96 0.0001
BW 3.529 ± 0.388 3.624 ± 0.357 1 1.6966 0.1956
TL 24.9 ± 1.747 21.4 ± 1.002 1 142.14 0.0001
TW 1.418 ± 0.183 1.3064 ± 0.178 1 9.9329 0.0021
TLe 10.532 ± 1.445 8.482 ± 0.995 1 68.819 0.0001
FLR 1.465 ± 0.279 1.406 ± 0.227 1 1.3783 0.2431
FLL 1.4567 ± 0.259 1.332 ± 0.206 1 7.1695 0.0086
TFLR 1.3385 ± 0.272 1.2991 ± 0.2219 1 0.6458 0.4234
TFLL 1.4035 ± 0.278 1.2977 ± 0.182 1 4.084 0.04584
HLR 1.553 ± 0.206 1.3826 ± 0.225 1 7.9356 0.0069
HLL 1.555 ± 0.203 1.3028 ± 0.231 1 17.071 0.0001
RULR 1.515 ± 0.155 1.2717 ± 0.165 1 29.847 0.0001
RULL 1.499 ± 0.211 1.248 ± 0.177 1 23.017 0.0001
SVL 14.32 ± 1.393 13.01 ± 2.386 1 12.47 0.0001

Table 2
Allometric patterns of morphological characters in individuals of A. dumerilii from the lake and captivity in relation to standard body 
size SLV. Eye to eye distance (EED), head width (HW), head length (HL), body width (BW), total length (TL), tail width (TW), 
tail length (TLe), femur length right and left (FLR, FLL), tibia-fibula length right and left (TFLR, TFLL), radius-ulna Length right 
and left (RULR, RULL), humerus length right and left (HLR, HLL) . Numbers in bold indicate statistically significant differences.

Character 
(Log)

Lake Captivity

Slope b (95% CI) r2 p Slope b (95% CI) r2 p

HW 0.6 (0.39, 0.8) 0.36 0.0001 0.73 (0.05, 0.81) 0.88 0.0001
HL 0.58 (0.3, 0.85) 0.23 0.0001 0.71 (0.49, 0.9) 0.49 0.0001
BW 0.86 (0.59, 1.1) 0.41 0.0001 0.97 (0.83, 1.1) 0.82 0.0001
TL 0.89 (0.72 1.05) 0.67 0.0001 1 (0.91, 1.04) 0.95 0.0001
TW 0.73 (0.41, 1.05) 0.26 0.0001 0.86 (0.67, 1.05) 0.65 0.0001
TLe 0.83 (0.49, 1.16) 0.3 0.0001 0.95 (0.79, 1.1) 0.75 0.0001
FLR 0.53 (0.07, 1) 0.08 0.025 1 (0.85, 1.27) 0.69 0.0001
FLL 0.44 (-0.04, 0.9) 0.06 0.06 1.12 (1.05, 1.49) 0.75 0.0001
TFLR 0.9 (0.36, 1.4) 0.16 0.002 0.91(0.66, 1.15) 0.55 0.0001
TFLL 0.8 (0.29, 1.3) 0.15 0.002 1 (0.79, 1.19) 0.68 0.0001
HLL 0.68 (0.24, 1.1) 0.35 0.004 0.94 (0.62, 1.2) 0.71 0.0001
HLR 0.91 (0.4, 1.4) 0.44 0.001 0.82 (0.51, 1.12) 0.44 0.0001
RULR 0.86 (0.49, 1.22) 0.58 0.0001 0.59 (0.34, 0.84) 0.38 0.0001
RULL 0.78 (0.3, 1.25) 0.38 0.001 0.83 (0.57, 1.09) 0.55 0.0001
EED 0.3 (-0.08, 0.7) 0.04 0.12 0.67 (0.57, 0.77) 0.83 0.0001
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decreased the growth rate of the main morphological 
traits (Delgado-Acevedo & Restrepo, 2008; Tejedo et al., 
2010). However, A. dumerilii does not show a decrease 
in size, since the larger sizes and higher FA occur in 
individuals from the lake. To explain the relationship 
between growth and FA, it has been hypothesized that 
a favorable environment, such as greater availability of 
food items with a higher nutrient content (Milligan et al., 
2008), allows for rapid growth of organisms, prompting 
higher developmental instability and FA levels (Lempa 
et al., 2000; Martel et al., 1999). The main reason is that 
there are trade-offs between growth rate and life-history 
traits such as developmental stability (Sibly & Calow, 
1984), and within species, different genotypes in specific 
environments need to change from optimizing growth 
rate to optimizing developmental quality. Therefore, we 

can expect higher FA in individuals of A. dumerilii that 
reach an optimal growth rate for their development in lake 
conditions, showing that fluctuating asymmetry might not 
be an unequivocal indicator of environmentally induced 
stress, since other factors can be involved, such as genetic 
stress or growth rate (Milligan et al., 2008; Velickovic & 
Perisic, 2006). 

An important factor may be the resource availability 
that can lead to larger body size (Jessop et al., 2006; Wu 
et al., 2006). Ambystoma dumerilii in the natural habitat 
has a high degree of trophic specialization, and consumes 
mainly crayfish (Cambarellus sp.), an abundant resource in 
Lake Pátzcuaro (Huacuz-Elías, 2008), although sometimes 
it consumes other crustaceans, insects, worms, small fish 
and tadpoles too (Aguilar-Miguel, 2005; Velarde-Mendoza, 
2012; Semarnat, 2018). In captivity, A. dumerilii had a 
mixed diet of fish fillet, earthworm, tubifex and acociles. 
According to some authors a mixed diet results in a slower 
growth rate than a bloodworm-only diet, and it seems 
that for captive aquatic species such as A. dumerilii, an 
invariant but good-quality diet is a better option, indicating 
that mixed diets being best is not universally true (Slight 
et al., 2015). 

Morphology of amphibians is directly related to 
movement, locomotion ability and individual performance 
(Aubret & Shine, 2008; Ijspeert & Cabelguen, 2006; 
Irschick & Garland, 2001). In our study, it was expected that 
individuals from the lake presented traits that are correlated 
with the fast-swimming performance in salamanders, 
necessary to escape from predation but also to capture 
prey (Urban, 2010; Van Buskirk & Schmidt, 2000). For 
example, tail morphology is known to have an impact on 
the locomotor performance while swimming (Van Buskirk 
& Schmidt, 2000; Vorndran et al., 2002), large tails are 
adaptations for rapid acceleration (Duellman & Trueb, 
1986), and are associated to the response to chemical 
predator cues (Van Buskirk & McCollum, 2000). In our 
study, we found larger and wider tails in individuals from 
the lake, suggesting that these individuals have developed 
a greater capacity of movement. A larger tail surface area 
can also generate greater thrust, so a greater stride can 
be achieved (Aubret & Shine, 2008). The morphology of 
Ambystoma is adapted to have larger tails but also larger 
heads. In Ambystoma larvae head size is associated with a 
greater acceleration ability, high acceleration bursts, and 
high swimming velocity (Hoff et al., 1989), as well as head 
width is positively related to propulsive performance and 
may serve an important stabilizing function (Fitzpatrick 
et al., 2003). In adult salamanders, head size is associated 
with food intake and level of aggression (Adams, 2000, 
2004; Adams & Rohlf, 2000). 

Figure 3. A) Principal components analysis on Procrustes 
coordinates of individuals from captivity and lake conditions that 
represents the variation in body shape between both conditions. 
Black circles indicate individuals from captivity, and gray circles 
to those from lake. B) Wireframe graph of mean body shape of 
individuals from captivity and lake conditions. Black contour 
represents the mean body shape of individuals from captivity, 
and gray contour to that of lake individuals.
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Aquatic species have elongated bodies because these 
species may use their whole trunk for swimming using 
a posterior traveling wave along their bodies (Deban & 
Schilling, 2009). Aquatic salamanders have an undulatory 
swimming gait with limbs tucked against the body (Frolich 
& Biewener, 1992). However, this species also uses its 
limbs for aquatic walking on the substrate (Azizi & 
Horton, 2004). In the case of A. dumerilii it can move 
towards the water column, however, by being considered 
epibenthic, it can swim or use its limbs (Aguilar-Miguel 
& Casas-Andreu, 2005; Montes-Calderón et al., 2011). 
Our results show that lacustrine organisms have larger 
limbs, as in other species of the genus Ambystoma where 
it has been reported that A. ordinarium have a daily 
displacement between 4 and 20 m (Aguilar-Miguel & 
Casas-Andreu, 2005; Montes-Calderón et al., 2011), while 
A. maculatum has a range of 3.3 to 29.4 m (Duellman & 
Trueb, 1994), which coincides with the displacements of 
other salamanders with an average distance of 10 m so that 
A. dumerilii could show a similar behavior (Duellman & 
Trueb, 1994). On the other hand, in captivity, individuals 
of A. dumerilii may not develop traits associated with 
swimming, as do individuals from the lake due to the 
effect of the size of the enclosure, and the limitations of 
artificial conditions (Álvarez & Nicieza, 2002; Altwegg & 
Reyer, 2003; Relyea & Hoverman, 2003), where there are 
no competitors or predators of other species. Therefore, it 
is not easy to replicate natural abiotic conditions (Essner 
& Suffian, 2010). In this way, Ambystoma salamanders 
perceive captivity as “mildly stressful” (Davis & Maerz, 
2011), however they show smaller sizes due to suboptimal 
environments and present less swimming capacity due 
to the limited space available for movement, greater 
susceptibility to hunger, and higher mortality when 
raised in conditions where resources are limited (Álvarez 
& Nicieza, 2002; Altwegg & Reyer, 2003; Relyea & 
Hoverman, 2003).

Variation in morphological traits scales with body 
size, ranging from the perfect covariance of a trait with 
body size (isometry) to highly uncorrelated, where 
morphological traits grow more or less slowly than 
body size (Fairbairn, 1997). The ontogenetic allometry 
is the source of morphological variation during the 
growth process (Murta-Fonseca et al., 2020). In our 
study, the allometric relationships between SVL and 
morphological traits were highly consistent, with most of 
the morphological characters showing negative allometric 
patterns or hypoallometry in many traits and the slopes 
of allometric correlation of many traits were lower in 
salamanders from the lake than captivity. We suggest 
that stressful conditions in the lake, such as disturbance 

derived from anthropogenic factors, change in land use, 
contamination by wastewater, herbicides and pesticides 
(Zambrano et al., 2011), promote lower development rates 
of these traits than body growth. 

It is important to mention that although we did not 
measure individual fitness and performance, all variations 
in phenotypic traits such as body size and body proportions, 
could affect performance. Our results are consistent 
in the context of performance, since individuals in the 
lake with slimmer bodies, reduced limbs, and higher FA 
suggest potential adaptations toward increased swimming 
performance and the opposite for those in captivity. 
Amphibians with smaller body sizes are associated with 
reduced survival (Altwegg & Reyer, 2003), and may 
dehydrate quicker when compared with larger individuals 
(Gray & Smith, 2005). It is important to ask if individuals in 
captivity are functionally similar to their wild counterparts 
(Calisi & Bentley, 2009).

Suboptimal environmental conditions can lead to stress 
that affects the health of the organisms and modifies their 
morphology, as well as their behavioral and physiological 
performance (Denver, 1997). The captivity conditions are 
designed to replicate the wild environmental parameters, 
in order to maintain animals in good long-term health 
and potentially improve their fitness, and on occasions 
promote their reintroduction into suitable environments 
(Davis & Maerz, 2011), therefore our study could help to 
rethink the conditions in which the organisms are found, 
since negative allometric patterns were found in relation 
to the extremities, which plays an important role for  
their fitness.

Since different populations of the same species are 
not found under the same conditions, the inclusion of 
morphological diversity data in biodiversity conservation 
seems to be an important developing strategy for reducing 
biodiversity losses under global change (Des Roches  
et al., 2018). 
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